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Abstract

Post-traumatic stress disorder (PTSD) is a common, debilitating condition with limited treatment options. Extinction of fear
memories through prolonged exposure therapy, the primary evidence-based behavioral treatment for PTSD, has only partial
efficacy. In mice, pharmacological inhibition of fatty acid amide hydrolase (FAAH) produces elevated levels of anandamide
(AEA) and promotes fear extinction, suggesting that FAAH inhibitors may aid fear extinction-based treatments. A human
FAAH 385C->A substitution encodes an FAAH enzyme with reduced catabolic efficacy. Individuals homozygous for the
FAAH 385A allele may therefore offer a genetic model to evaluate the impact of elevations in AEA signaling in humans,
helping to inform whether FAAH inhibitors have the potential to facilitate fear extinction therapy for PTSD. To overcome
the challenge posed by low frequency of the AA genotype (appr. 5%), we prospectively genotyped 423 individuals to
examine the balanced groups of CC, AC, and AA individuals (n = 25/group). Consistent with its loss-of-function nature, the
A allele was dose dependently associated with elevated basal AEA levels, facilitated fear extinction, and enhanced the
extinction recall. Moreover, the A-allele homozygotes were protected against stress-induced decreases in AEA and negative
emotional consequences of stress. In a humanized mouse model, AA homozygous mice were similarly protected against
stress-induced decreases in AEA, both in the periphery, and also in the amygdala and prefrontal cortex, brain structures
critically involved in fear extinction and regulation of stress responses. Collectively, these data suggest that AEA signaling
can temper aspects of the stress response and that FAAH inhibition may aid the treatment for stress-related psychiatric
disorders, such as PTSD.
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amygdala [9], a brain region that is critical for emotional
regulation and fear extinction learning [10], and that dis-
ruption of eCB signaling impairs fear extinction [9] and
exacerbates neurobehavioral responses to stress [11].

Indiscriminate activation of CB1 receptors by exogenous
agonists such as A’-tetrahydrocannabinol (THC) is asso-
ciated with a potential for abuse liability and a range of
negative consequences, including cognitive impairment
[12]. A more selective strategy that avoids these challenges
may be offered by the unique biology of the eCB system.
AEA is synthesized on demand at the synapse, and its
action is terminated through degradation by the serine
hydrolase fatty acid amide hydrolase (FAAH) [13]. In
experimental animals, potentiation of AEA via pharmaco-
logical FAAH inhibition selectively facilitates extinction
learning [4, 14, 15]. In addition to targeting dysregulated
fear responding, FAAH inhibition also mitigates anxiogenic
effects of stress. This is likely related to the observation that
stress causes a reduction in AEA in the amygdala [16-18], a
key node of anxiety-promoting circuitry, and that this
reduction can be prevented via FAAH inhibition [5]. Aug-
mentation of AEA in experimental animals prevents the
manifestation of anxiety-like behavior following stress, both
acutely [6] and chronically [5, 19, 20]. FAAH inhibition
does not appear to be anxiolytic per se, but protects against
the anxiogenic effects of stress during times of heightened
environmental aversiveness [5—8]. Collectively, these find-
ings are consistent with a proposed role of the eCB system
as a “stress buffer” [11].

FAAH inhibitors suitable for human use have been
developed for non-psychiatric indications, such as inflam-
matory pain [21]. These programs have been discontinued
due to the lack of efficacy in clinical trials, but have
established selective that FAAH inhibitors as a class are
safe, well tolerated, and lack abuse liability. This prompts
the question whether FAAH inhibitors could be developed
into PTSD therapeutics. Preliminary support for this notions
comes from human studies that have examined the con-
sequences of a loss-of-function FAAH 385C->A mutation
(rs324420). This variant encodes an FAAH protein more
susceptible to degradation and therefore is associated with
an approximate 30% reduction of FAAH activity [22].
Studies that have examined the carriers of this variant
generally support the notion that reduced FAAH activity
may beneficially impact stress-related and fear-related
behaviors in humans [4, 23-25]. However, these studies
have largely relied on comparisons of FAAH 385C-
homozygous and CA-heterozygous subjects. In FAAH
385CA-heterozygous individuals, potential protective
effects of the A allele may be partially masked by expres-
sion of fully functional FAAH protein from the C allele.
Although fewer than 5% of individuals of European descent
are A homozygous, this group should be particularly
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informative in assessing the potential benefits of reduced
FAAH activity at both the biochemical and behavioral level.
Here, we used a translational strategy in which human
and mouse studies were used in concert to establish the
biochemical and behavioral consequences of reduced FAAH
activity. In the human study, we used a prospective geno-
typing strategy that allowed us to recruit balanced genotype
groups, including a full group of AA homozygous indivi-
duals. In the mouse study, we used a humanized knock-in
mouse model of FAAH C385A variation. This allowed us to
examine the biochemical consequences of attenuated FAAH
activity on AEA levels not only in the peripheral circulation,
but also in the brain. In humans, we found that the FAAH
385A allele is associated with a gene-dose-dependent
increase of basal AEA levels, facilitated fear extinction,
and enhanced extinction recall. We also found that elevated
AEA conferred via the A-allele protects against negative
affective responding following stress exposure. We then
used parallel human and mouse studies to demonstrate that
AA homozygotes are protected against stress-induced
decreases in circulating AEA, and in mice, also in stress-
sensitive brain regions such as the amygdala and prefrontal
cortex. Together, these findings provide compelling bio-
chemical and behavioral support for the notion that FAAH
inhibitors merit the evaluation as PTSD therapeutics.

Methods and materials
Methods and materials: human study
Participants

Participants (n =75; 39/36 female/male) aged 18-35 years
(mean =24.4; SEM =0.4) were recruited from the Lin-
koping University campus via flyers and online advertise-
ments. A total of 423 individuals (CC =251, AC =147,
AA =25) were prospectively genotyped and screened, and
included 25 of each genotype group (13/12 female/male).
For inclusion and exclusion criteria, see Supplementary
Information. Participants were paid 750 SEK (approxi-
mately 75 Euros) for their participation. All participants
provided informed consent prior to participation, and the
study protocol was approved by the Regional Ethical
Review Board, Linkoping.

Session overview

Participants completed two laboratory sessions (see Supple-
mentary Fig. 1), each lasting for approximately 2 hours. All
sessions started at noon or later and each subject came in at the
same time of day on consecutive days. At the first session,
participants completed a fear-conditioning task based on [26],
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Fig. 1 FAAH C385A influences the baseline peripheral levels of
molecules hydrolyzed by FAAH in humans. a The A allele was
associated with a gene-dose-dependent increase in basal peripheral
AEA, as well as other molecules hydrolyzed by FAAH, including
OEA (b) and PEA (c¢). d There was no effect of FAAH C385A on

including habituation, acquisition, and extinction phases. Par-
ticipants were then pseudorandomly assigned to the stress or
control conditions, stratified by gender and genotype. Partici-
pants completed an affective image task, the control or stress
procedure, and another affective image task. On day two,
participants completed the remainder of the fear-conditioning
procedure (recall of extinction and renewal of fear phases).
They then completed the affective image task, the control or
stress procedure (whichever one was not completed on day
one), and another affective image task. Blood samples were
collected before, immediately after, and following 20 min of
recovery following stress and control procedures (see Fig. 1) to
assess the levels of circulating eCBs and related compounds
(AEA, 2-AG, OEA, and PEA) and cortisol. More detailed
information regarding the sessions, task descriptions, and sta-
tistical analysis can be found in Supplementary Information.

Psychophysiology

Upon arrival at both sessions, participants were outfitted
with facial EMG sensors over the zygomaticus major
(“zygomatic;” cheek), corrugator supercilli (“corrugator;”
above the eyebrow), and orbicularis oculi (“orbicularis;”
below the eye) muscles. Sensor application and data col-
lection procedures were completed as previously reported
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2-AG, which is degraded in a manner distinct from FAAH. * p<
0.001; Bars represent means + standard error of the mean (SEM)
analyzed using one-way ANOVA with Dunnet’s test for multiple
comparisons using CC as the control group. Sample sizes: CC =21,
AC=18, AA=21

[27]. Electrocardiography was assessed via disposable
electrodes placed on the right supraclavicular fossa and
mid-axillary on the left side of the abdomen, and ele-
trodermal activity was assessed via the thernar and hypo-
thenar of the right hand. All data were collected using
Biopac’s MP150 Data Acquisition System (Biopac Sys-
tems, Inc, Camino Goleta, CA, USA).

Fear-conditioning paradigm

The fear-conditioning task, based on [26] but adapted to a fear-
potentiated startle paradigm, consisted of five phases con-
ducted over 2 days. Day 1 consisted of habituation (HAB),
acquisition (ACQ), and extinction (EXT) phases, with EXT
divided into early (first four trials) and late (last four trials)
phases. Day 2 consisted of recall of fear extinction (RCL) and
renewal of fear responding (RNW). Throughout all phases, the
eyeblink component of the startle response was measured
following a blink-eliciting auditory stimulus (“startle probe”).
The task included two “contexts;” digital photographs of two
different rooms (a reception waiting room and an office). Each
room contained a lamp that changed colors, and specific lamp
colors constituted the conditioned stimuli (CS+, CS-). The US
was an aversive sound [28], modeled after the sound of nails
across a chalkboard, with a duration of 3 s.
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Affective image task

Affective images were selected from the International
Affective Picture System [IAPS; [29]]. Pictures were pre-
sented for 6 s followed by self-reported ratings of valence
and arousal. Facial EMG recordings of the zygomatic and
corrugator were assessed as the mean EMG amplitude
during the 6s picture presentation compared with the
immediately preceding 1 s baseline. The effect of stress on
non-specific muscle activity (i.e., muscle activity in the
absence of a stimulus) was assessed via averaging the 1s
pre-stimulus baseline throughout the task, comparing before
(“pre”) to after (“post”) stress and control. The effect of
stress on response to affective stimuli was assessed via
average the cumulative EMG response to each stimulus
type (positive, neutral, and negative).

Stress task

The Maastricht Acute Stress Test (MAST), a modified version
of the classic cold presser task, is a quick and non-invasive
approach to elicit robust autonomic and glucocorticoid stress
response [30]. The MAST is a 10min task consisting of
alternating “hand immersion” (HI) trials and “mental arith-
metic” (MA) trials performed aloud with negative
socio-evaluative feedback. Psychophysiological measures
(heart rate and electrodermal activity) were collected during
the task, and self-reported ratings were collected upon com-
pletion. Blood samples were collected via an intravenous
catheter before, immediately after, and after 20 min of
recovery.

Genotyping

DNA was extracted via standard protocols using the Insta-
Gene matrix (Bio-Rad Laboratories, USA), and genotyping
at the FAAH C385A locus (rs324420) was done with Tag-
Man Fast Advanced Master Mix (Thermo Fisher Scientific,
USA) in an Applied Biosystems 7500-Fast Real time PCR
(Applied Biosystems, Foster City, CA, USA USA)
according to the manufacturer’s instructions.

Ancestry informative makers

Blood DNA was extracted using PureLink Genomic DNA
Kit (ThermoFisher Scientific, Hagersten, Sweden) accord-
ing to the manufacture's protocol. Genotyping was done on
a TagMan SNP genotyping assay set of 96 ancestry markers
previously reported [31] using an ABI 7900 Sequence
Detection System real Time PCR systems and TagMan Low
Density Arrays (Applied Biosystems, Foster City, CA,
USA). Missing values were considered as heterozygotes (30
of 7315 SNP assays spread across 25 of the 77 subjects;
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21 subjects had one, three subjects had two, and one subject
had three missing SNPs). Assigning the missing values this
way was chosen, since discarding all SNPs with any
missing value (n =79 full SNP series) gave very similar
results. Categorical principal component analysis (CatPCA)
was applied on the final genotype dataset, and factor
scores for the two first principal components were
extracted and tested for differences between the treatment
groups.

Cortisol analysis

Cortisol levels were obtained from serum samples analyzed
using the DetectX Cortisol Enzyme Immunoassay kit
(Arbor Assays, Ann Arbor, MI, USA) according to the
manufacturer’s instructions.

Mass spectrometric detection of eCBs

The eCBs (AEA and 2-AG) and NAEs (OEA, SEA, PEA)
were extracted and analyzed using liquid chromatography
tandem mass spectrometry (LC-MS/MS), as previously
published [32] (see also, Supplementary Information).
Briefly, 300 upL. of serum was thawed and vortexed, and
30 uL of a mixture containing the deuterated internal stan-
dard (AEA-d4, OEA-d4, and PEA-d4 (50 nM)) and 2AG-d5
(1000 nM) was added to each serum sample. C8 Octyl SPE
columns (6 mL, 200 mg) (Biotage; Uppsala, Sweden) were
used for lipid extraction. On the day of analysis, samples
were reconstituted in 30 uL of LC mobile phase A. The
injection volume was 10puL. All standards and internal
standards were purchased from Cayman Chemicals (Ann
Arbor, MI, USA).

Statistical analysis

Behavioral and biochemical analysis were carried out using
one-way or repeated-measures analysis of variance (ANOVA),
with genotype as a between-subjects factor, and Dunnet’s post
hoc tests to compare the reference group (CC) to the other
genotypes (AC, AA), and an « level of 0.05. When possible,
we reduced the dimensions (e.g., post—pre, stress—control).
Sociodemographic and personality data were evaluated with a
one-way ANOVA or chi-squared tests. A probability level of <
0.05 was accepted as statistically significant.

Methods and materials: mouse study
Subjects
Male FAAH C385A mice, derived from the line generated

in [23] and back-crossed on C57BI6J strain for four gen-
erations, were bred in-house through heterozygote (AC)
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Fig. 2 The FAAH A-allele is associated with facilitation fear extinction
and enhanced extinction recall. a Carriers of the Aallele demonstrated
greater extinction, shown as change in the standardized startle
response to the fear-associated cue (e.g., CS+ startle/rest startle) from
acquisition (ACQ) to late extinction (EXT; last four extinction trials).
Here, more negative values denote greater extinction. b A-allele

male and heterozygote female (AC) breeding pairs. All
experiments were approved by the University of Calgary
Animal Care Committee and followed the guidelines from
the Canadian Council on Animal Care.

Stress exposure

Mice were exposed to 15 min of forced swim stress in room
temperature (22+/- 1 °C) water, after which they were
returned to their home cage. Control animals were removed
at the same time as the stress animals, but were immediately
sacrificed by rapid decapitation so to not be influenced by
the stress of their cage mates [33]. Stressed mice were
removed from the home cage 15 min following cessation of
stress and rapidly decapitated. Prefrontal cortex and
amygdala were dissected as previously described [18].

Corticosterone analysis

Plasma was run in triplicate at a 1:500 dilution using a
commercially available corticosterone ELISA (Caymen
Chemical) as per the manufacturer’s protocol.

eCB quantification in animal studies

Lipid extractions were carried out as previously described
[34, 35]. Briefly, frozen brain tissue was briefly weighed
and then manually homogenized (with a glass rod) in bor-
osilicate glass culture tubes containing 2 mL of acetonitrile
with 5 nmol of d§-2-AG, 5 pmol of d8-AEA, 40 pmol d4-
PEA, and 40 pmol d4-OEA. For plasma eCB levels, 200 L
of plasma was added directly to acetonitrile with the same
preparation of internal standard as the tissue samples. All
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homozygotes also demonstrated enhanced recall of extinction learning
(RCL; day 2) when tested 24 h after extinction learning (EXT; day 1).
* p<0.05 effect of genotype. Bars represent means + SEM analyzed
using one-way ANOVA with Dunnet’s post hoc follow-up test.
Sample sizes: CC =24, AC =25, AA=24

other steps of processing for plasma were identical to those
for tissue (see Supplementary Information). Analysis in
mass spectrometry was performed exactly as previously
described [35].

Results

The distribution of genotypes in the screened population
(251 CC, 147 AC, and 25 AA) did not differ from the
Hardy—Weinberg equilibrium (C allele frequency = 0.77; A
allele frequency =0.23; X?2=0.32; p=0.85). The AIM
panel identified two ancestry factors that did not differ
between the genotype groups, and the groups did not differ
on any demographic measure (Supplementary Table 1).

FAAH (C385A variation is associated with a gene-
dose-dependent increase in basal AEA

The FAAH 385A variant is predicted to produce a FAAH
protein more sensitive to proteolytic degradation, resulting
in decreased FAAH activity and increased AEA levels [22].
However, the biochemical confirmation to date is limited
[25, 36, 37], especially in regard to healthy humans. We
found a robust, gene-dose-dependent effect of the A allele
on baseline peripheral levels of AEA (F(2,59)=7.92, p
=0.001; post hoc tests: AC vs. CC p=0.038; AA vs. CC
p<0.001) (Fig. 1a) in humans. Additional analyses further
supported that elevated AEA levels were caused by atte-
nuated degradation by FAAH, since similar effects were
seen for other molecules hydrolyzed by FAAH, including
OEA (F(2,5)=7.79, p=0.001; post hoc tests: AC vs.
CC p=0.070; AA vs. CC p<0.001) (Fig. 1b) and PEA
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Fig. 3 The A-allele protects against the negative consequences of
stress. a A-allele was associated with a gene-dose-dependent reduction
in stress-induced negative affect, as measured via the change in the
resting corrugator activity due to stress compared with control.
b Stress resulted in a net increase in negative affect, as indexed by
greater corrugator reactivity, in response to all stimuli (e.g., positive,

(F(2,59) =0.9.34, p <0.001; post hoc tests: AC vs. CC p =
0.22; AA vs. CC p<0.001) (Fig. 1c). In contrast, there was
no genotype effect on the levels of 2-AG (F(1,58) =0.24, p
=0.79) (Fig. 1d), which is degraded in an FAAH-
independent manner, further pointing to reduced FAAH
activity as a causal factor behind the elevated AEA levels.
The A allele produced similar effects on AEA levels in the
peripheral blood of mice (F(2, 14) =3.78; p <0.05; post
hoc tests: AC vs. CC p<0.02; AA vs. CC p <0.05; Fig. 4c;
see also [23]); consistent with the human data, there was no
effect of genotype on 2-AG levels (Supplementary Fig. 4B).
Thus, as hypothesized, we found a gene-dose-dependent
effect of the A allele on the basal AEA levels and on other
molecules metabolized by FAAH, but not on 2-AG. This is
a biochemical phenotype that replicates, albeit with lower
efficacy, the expected activity profile of pharmacological
FAAH inhibition. We next sought to determine the beha-
vioral consequences of elevated AEA on fear- and stress-
related behaviors.

FAAH 385A selectively promotes extinction of
conditioned fear

The eCB system is critically involved in the extinction of
aversive memories [9], and elevation of AEA has been
shown to facilitate fear extinction in mice [4, 23, 38]. Here,
we determined the impact of the reduced-activity FAAH A-
allele, which is associated with elevated AEA, on condi-
tioned fear extinction in humans. Using a Pavlovian fear-
potentiated startle paradigm, we found that the A-allele is
associated with the facilitation of within-session fear
extinction (F(2,70) =3.30, p =0.041; post hoc tests: AC
vs. CC p =0.64; AA vs. CC p =0.025) (Fig. 2a), as well as
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neutral, and negative images) in C-allele homozygotes. However, A-
allele homozygotes demonstrated reduced negative affect specifically
in response to negative stimuli following stress. * p<0.05; Bars
represent means + SEM analyzed using one-way ANOVA with Dun-
net’s post-hoc follow-up test with CC as the control group. Sample
sizes: CC =24, AC=25, AA=24

enhanced recall of fear extinction when tested 24 h later (F
(2,69) =4.55, p=0.014; post hoc tests: AC vs. CC p=
0.69; AA vs. CC p=0.01) (Fig. 2b; See also Supplemen-
tary Fig. 2C). No differences were detected in the uncon-
ditioned startle response (Supplementary Fig. 2A),
acquisition of fear conditioning (effect of CS: F(1,72) =
38.86, p <0.001; cue * genotype, p = 0.88) (Supplementary
Fig. 2B), response to the CS- during extinction (p = 0.89)
(Supplementary Fig. 2D), or renewal of fear (effect of
genotype: p = 0.30) (Supplementary Fig. 2E). Thus, the A
allele does not influence innate fear expression or acquisi-
tion of conditioned fear, but is selectively associated with
enhanced conditioned fear extinction and its recall. These
findings are parallel and extend upon recent findings in
humans [23], and represent a direct human translation of
data previously obtained using humanized FAAH C385A
knock-in mice [23] as well as pharmacological inhibition of
FAAH [4].

Elevated AEA conferred by FAAH 385A attenuates
emotional, but not neuroendocrine, responses to
stress

Elevated AEA conferred via reduced FAAH activity pro-
tects against the negative effects of stress [6-8, 17-20, 39,
40]. We therefore wanted to explore the consequences of
elevated AEA conferred by the A-allele on emotional and
neuroendocrine responses to stress in humans. We used an
established stress task, the Maastricht Stress Task [30], and
found that it robustly produced the expected increase in
serum cortisol (F(1,57 =20.4, p <0.001; post hoc tests: AC
vs. CC p =0.90; AA vs. CC p =0.94) (Fig. 4b), subjective
stress (F(1,71) =381.8, p<0.001; AC vs. CC p =0.98; AA
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Fig. 4 A-allele homozygotes are protected against stress-induced
decreases in AEA across species. a As compared with the control
session, stress elicited a significant reduction in peripheral AEA in
humans during recovery, but this effect was absent in AA homo-
zygotes. b While stress elected a robust increase in cortisol, there was
no genotypic difference in the neuroendocrine response to stress at any
time point. ¢ Similar to humans, stress elicited a decrease in AEA in
the peripheral blood of mice, but this effect was absent in AA mice.
Stress also produced the decreased AEA in the d amygdala and

vs. CC p=0.89), and physiological arousal (F(1,66)=
141.6, p<0.001, AC vs. CC p =0.24; AA vs. CC p =0.09)
(Supplementary Fig. 3) in humans. However, there was no
effect of genotype on any measure of stress (cortisol, p =
0.95; subjective stress, p = 0.92; physiological arousal, p =
0.31), nor was there an effect of genotype on basal cortisol
(p =0.83).

e prefrontal cortex of CC and AC mice, but again, not in AA mice.
d Stress elicited a significant increase in peripheral corticosterone, but
similar to humans, there was no effect of genotype. a, b #p <0.05 for
stress vs. placebo session at specific time point; *p <0.05 effect of
genotype; Sample sizes: CC = 21(AEA)/20(Cort); AC = 18(AEA)/17
(Cort); CC =21. ¢f * p<0.05 effect of stress. Sample size: n = 6-13
per group. Bars represent means+ SEM analyzed using one-way
ANOVA with Dunnet’s post-hoc follow-up test

Animal studies suggests that FAAH inhibition is not
anxiolytic in its own right, but instead mitigates the
anxiogenic effects of stress [5-8]. Thus, we sought to
determine whether the A allele influences affective
responses in humans at baseline or following stress. To do
so, we assessed affective responses to emotional images
using facial electromyography (EMG) of the corrugator
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(“frown”) and zygomatic (“smile”’) muscles, an objective
and sensitive measure of affective response [29]. We
obtained the facial EMG responses and self-reported ratings
of valence and arousal in response to normatively rated
affective images before and after stress and control proce-
dures. No differences in baseline affect (e.g., responses to
the first set of affective images) were detected via facial
EMG (corrugator, p =0.61; zygomatic, p =0.94) or self-
report ratings (valence, p = 0.44; arousal p =0.95). How-
ever, stress produced an increase in the corrugator activity
during rest (e.g., during the intertrial intervals, in the
absence of any stimulus) that was inversely associated with
the number of A alleles (F(2,70] = 4.83, p = 0.03; post-hoc
tests: AC vs. CC p=0.21; AA vs. CC p=0.03; Fig. 3a).
That is, CC individuals demonstrated the greatest increase
in stress-induced corrugator activity at rest. This effect was
not seen in the zygomatic (p =0.22), ruling out a general
effect on muscle tension. Thus, this increase in the corru-
gator activity is interpreted as a stress-induced increase in
negative affect and is protected against by the A-allele.

Stress also influenced the responses fo affective images.
While CC individuals showed a net increasein negative
affective responses to all stimuli after stress, this effect was
absent in AA individuals (F(2,140) = 3.75, p = 0.05; post-
hoc tests: AC vs. CC p=0.89; AA vs. CC p=0.04).
Furthermore, AA individuals actually demonstrated reduced
corrugator reactivity to negative affective images (£(2,70)
=3.14, p=0.05; AC vs. CC p=0.98; AA vs. CC p=
0.04) (Fig. 3b). Thus, A-allele homozygotes are not only
protected against stress-induced increases in negative affect
at rest, but also show reduced negative affect in response to
negative emotional stimuli. As stress-induced declines in
AEA signaling are believed to contribute to stress-induced
changes in emotional responses [11] and AA homozygotes
are resistant to stress-induced changes in negative affect, we
next explored if AA individuals were protected against
stress-induced declines in AEA signaling.

FAAH 385A-allele homozygotes are protected
against stress-induced decreases in AEA across
species

We next examined the impact of stress on circulating levels
of eCB molecules in humans and in mice humanized for the
FAAH C385A polymorphism. Additionally, we determined
if stress-induced changes in AEA signaling in the amygdala
and prefrontal cortex of humanized FAAH C385A mice
were modulated by a genotype in a parallel manner to any
changes seen in the periphery. In humans, during recovery
from the stressor task, the circulating levels of AEA were
significantly reduced overall, but this reduction was absent
in AA individuals (F(1,59) =7.01, p = 0.01; main effect of
genotype: F(2,59) =7.54, p = 0.001; post-hoc tests: AC vs.
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CC p=0.03; AA vs. CC p=0.001; Fig. 4a). Thus, the A-
allele homozygotes were protected against stress-induced
decreases in peripheral AEA.

Mice carrying the A-allele showed remarkably similar
biochemical consequences of stress. Mice of all genotypes
were exposed to a 15 min forced swim stressor and then
provided a brief recovery period (15 min) to parallel the
approach taken in the human studies, after which AEA
levels were measured in the peripheral circulation, the
amygdala, and the PFC. Following exposure to stress, A-
allele homozygotes specifically were protected against
stress-induced decreases in circulating AEA (F(2, 36) =
13.05, p <0.01; post hoc: CC stress vs. CC control p < 0.01;
AC stress vs. AC control p < 0.05; AA stress vs. AA control
p>0.05) (Fig. 4c), as well as the amygdala (F(2, 60) =
3.94, p<0.03; CC stress vs. CC control vs. p<0.05; AC
stress vs. AC controls p <0.05; AA stress vs. AA controls:
p>0.05) (Fig. 4d) and prefrontal cortex (PFC) (F(2, 50) =
3.47, p<0.01; CC stress vs. CC control vs. p<0.01; AC
stress vs. AC control p <0.05; AA stress vs. AA control p >
0.05) (Fig. 4e). While stress increased 2-AG within the
amygdala (Supplementary Fig. 6A) and PFC (Supplemen-
tary Fig. 6B), this did not differ between genotypes, nor
were there detectable changes in 2-AG in the periphery
(Supplementary Fig 5). Just as in humans, there was no
effect of genotype on stress-induced changes in corticos-
terone (Fig. 4f).

Thus, in both species, A-allele homozygotes were pro-
tected against stress-induced decreases in peripheral AEA,
and in mice, this protective effect extended to the key stress-
sensitive brain regions, including the amygdala and pre-
frontal cortex. Furthermore, this effect was specific to AEA,
as there was no effect of genotype on stress-elicited changes
in 2-AG, which is degraded in an FAAH-independent
manner, or glucocorticoid secretion.

Discussion

Currently used pharmacotherapies for PTSD are geared
more at mitigating the symptoms rather than mechan-
istically oriented to treat the underlying pathology, and their
effect sizes are insufficient [1, 39, 41]. Consequently, there
is a great need for novel PTSD medications that could target
the core pathophysiology of this disorder, i.e., dysregulation
of fear and stress responding. Animal studies have sug-
gested that inhibition of the eCB-degrading enzyme FAAH
may offer a novel mechanism to aid the current PTSD
treatments. Here, we therefore used a human genetic model
of decreased FAAH activity to provide initial proof-of-
principle for this strategy. This was complemented by the
use of a homologous humanized mouse model. Collec-
tively, our data provide consistent translational support for
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the feasibility of targeting FAAH with inhibitors as a
treatment for PTSD.

Statistical associations between the candidate loci and
complex traits, in particular when obtained in small
case—control studies, suffer from multiple weaknesses, have
frequently failed to replicate, and have largely been sur-
passed by more sophisticated approaches, such as genome-
wide association studies (GWAS) [42]. In cases where a
mutation has a direct, measurable biochemical consequence,
however, a complementary strategy becomes possible.
Prospectively determined allelic variation can, in these
cases, be used as a proxy for directly—i.e., pharmacologi-
cally—manipulating that biochemical variable. This
approach is what has allowed the emergence of precision
medicine approaches, in which the predictive power can be
sufficient to guide clinical decision-making at the single
subject level, as exemplified by another metabolic enzyme,
CYP2C19 [43].

To determine whether our human genetic model is
appropriate to assess the therapeutic potential of FAAH
inhibition, we therefore first established the link between
FAAH genetics and eCB biochemistry. Our biochemical
findings are consistent across humans and humanized mice
carrying the same loss-of-function FAAH allele. In both
species, we found that the FAAH 385A allele gene-dose-
dependently increased the basal circulating AEA. Other
eCBs degraded by FAAH were similarly affected, while 2-
AG, which is degraded through a FAAH-independent
pathway, was not. These findings establish a definitive
biochemical consequence of variation at the FAAH C385A
locus that can be detected peripherally. The use of huma-
nized mice then allowed us to demonstrate that low FAAH
activity also results in elevated AEA in brain areas of cri-
tical importance for fear-learning, anxiety, and stress
responses. Because the humanized mouse model is imple-
mented in inbred mice, i.e., on an invariant genetic back-
ground, these results also demonstrate that the
consequences of FAAH C385A variation on AEA levels are
independent of genetic variation elsewhere in the genome.

To our knowledge, this is the most extensive character-
ization of the biochemical consequences of FAAH gene
variation on the eCB system. Our findings add to and
expand on previous reports in clinical populations [25] and
obese individuals [36, 37], as well as recent PET imaging
findings, indicating that central FAAH levels are reduced in
human FAAH 385A carriers [44]. The effect sizes observed
across these studies may seem to contradict an emerging
consensus from numerous GWAS, which suggests that
individual effect sizes of common allelic variants should be
very small [42]. We believe that this contradiction is only
apparent. Generally, small effect sizes for common variants
are well supported for complex disease phenotypes. This is
not necessarily the case for simple biochemical

endophenotypes that are proximal to the activity of the gene
product. Once again, this is illustrated by established con-
sequences of variation that affects the activity of CYP2C19
and other drug-metabolizing enzymes.

Having established that the FAAH 385A allele confers
increased basal AEA levels, we then examined the beha-
vioral consequences of this potentiation. We found that the
A-allele is associated with facilitated fear extinction, repli-
cating and extending previous studies with both mice and
humans [23], and adding to the literature demonstrating
similar effects produced by pharmacological inhibition of
FAAH in rodents [4, 14, 15]. We used fear-potentiated
startle to assess fear learning and extinction, while previous
reports used skin conductance in humans and fear-induced
freezing behavior in animals [23]. However, one previous
study in rodents did use fear-potentiated startle as opposed
to freezing behavior, and similar to our data, found that
pharmacological elevation of eCB signaling enhanced the
extinction of this behavioral measure as well [45]. The
consistency of these findings demonstrates that this effect is
robust and not limited to a single outcome measure or
species. Importantly, this facilitation of extinction is not
limited to within-session extinction, but is also evident 24 h
later, corroborating that preclinical evidence that potentiated
AEA may facilitate consolidation of emotional memories
[46].

At a neural circuit level, extinction of fear is believed to
involve functional coupling between the ventromedial pre-
frontal cortex (vmPFC) and the amygdala, whereby optimal
extinction is achieved by increased activation of the vimPFC
and deactivation of the amygdala. Disorders associated with
impairments in fear extinction, such as PTSD, exhibit
hypoactivity of the vmPFC and hyperactivity of the
amygdala [47, 48]. Our findings of enhanced fear extinction
in FAAH 385A-allele carriers could relate to alterations in
neural activity within this circuit. Consistent with this
hypothesis, activation of the eCB system by exogenously
administered synthetic THC (oral dronabinol) prior to
extinction training promotes recall of extinction when tested
in a drug-free state 24 h later [49]. In addition to promoting
fear extinction, THC administration was found to both
reduce the amygdala reactivity to the previously fear-
associated cue during extinction learning and increase the
vmPFC activity during extinction recall testing [50]. Similar
to the effects of THC, FAAH 385A-allele carriers have been
found to exhibit blunted reactivity of the amygdala to threat
cues [24]. As such, these data would suggest that elevations
in AEA signaling at the CB1 receptor produced by the
FAAH 385A allele promote fear extinction by increasing the
activity in the vmPFC, reducing activity of the amygdala, or
both. Animal studies support this differential response, as
increased cannabinoid signaling has been found to reduce
the firing rate of the amygdala neurons in vivo [51, 52],
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while in the mPFC, eCB signaling predominately targets the
inhibitory neurotransmission and could promote excitation
of prefrontal neurons through a reduction in local
GABAergic inhibition [53].

In addition to the activity of the vmPFC and amygdala
per se, increased functional connectivity between these two
structures acts to constrain the threat response [54, 55].
FAAH 385A-allele carriers exhibit increased structural and
functional connectivity between the vmPFC and the
amygdala [23, 56]. In contrast, the A-allele carriers did not
differ from CC individuals in functional connectivity
between the amygdala and dorsal anterior cingulate cortex,
neurocircuitry associated with the expression of conditioned
fear [57, 58]. This effect was replicated in humanized mice
carrying the A allele, which demonstrated enhanced con-
nectivity between the amygdala and the vmFPC, but no
difference in connectivity between the amygdala and dor-
somedial PFC [59]. Thus, elevated AEA conferred by
reduced FAAH activity appears to promote the connectivity
between the amygdala and vmPFC. This may facilitate the
top-down control of fear responses necessary for fear
extinction, providing a candidate mechanism for the
potentiation of fear extinction observed in our study. Given
that connectivity is impaired between the vmPFC and
amygdala in PTSD and other anxiety-related disorders [60—
62], the ability of AEA signaling to enhance the coupling of
this circuit and promote fear extinction may provide a
systems-level model of how targeting the FAAH activity
could be a suitable pharmacotherapeutic option for PTSD.

The eCB system is increasingly recognized to play an
important role in behavioral stress responses beyond
extinction learning [11]. Preclinical studies have shown that
stress produces a rapid induction of the FAAH activity that
results in a reduction of the AEA signaling pool [16, 17,
63]. Accordingly, stress consistently reduces AEA within
the amygdala [17, 18] and hippocampus [64, 65], while
findings in the PFC vary depending on the type of stressor
[63, 64, 66]. The reported effects of stress on AEA in
humans have been less consistent [25, 67]. In the present
study, we observed a stress-induced decrease in circulating
AEA in both CC and AC individuals. In contrast, the A-
allele homozygotes were protected against this consequence
of stress exposure. We found the same effect in our
humanized FAAH C385A mice; AA homozygotes were
protected against the stress-induced decreases in circulating
AEA observed in CC and AC genotypes. In the humanized
mouse model, we also found that AA mice were protected
against decreases in AEA in the stress-sensitive brain
regions, including the amygdala and PFC. Thus, across
species, we show that stress reduces peripheral AEA, and
that the FAAH 385A allele protects against this effect.
Furthermore, in mice, these effects extend to the brain.
Collectively, our data suggest that FAAH 385AA results in
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the potentiation of AEA, and protection against stress-
induced AEA decrease both in the periphery and brain. This
is consistent with a recent PET study, which reported that
FAAH variation influences binding of a FAAH-specific
radioligand in the brain [44].

In animal models, pharmacological disruption or genetic
deletion of FAAH prevents stress-induced decline in AEA
content within the amygdala and the effects of stress on
emotional behavior and reactivity [4, 5, 7, 19, 20, 39, 68].
Consistent with those preclinical reports, we found that after
stress exposure, the A-allele carriers were protected against
stress-induced enhancement of negative affect. Moreover,
although we did not find genotype effects on self-reported
ratings of affect or arousal, psychophysiological measures
showed reduced negative affective responses to negative
stimuli in AA homozygotes following stress exposure.
Facial EMG, the method used to obtain these findings is a
sensitive, objective measure of affect [29] that can be pre-
dictably modulated by pharmacological (e.g., [69]) and
psychological (e.g., [70]) manipulations. Furthermore, in
humans, the face broadcasts the affective states to others,
profoundly influencing social interaction [71, 72]. The
effects conferred by the A allele, an attenuation of stress-
induced changes in response to negative affective stimuli,
support the proposition that the eCB system can be viewed
as a “stress buffer” [73].

We did not find any effect of elevated AEA levels
associated with the FAAH 385A allele on stress-induced
glucocorticoid secretion in humans or mice. Prior animal
studies using FAAH inhibitors have yielded mixed results,
with some reporting that inhibition of FAAH can dampen
the HPA responses to stress [74, 75], while others not
observing this effect [40, 76]. Thus, even with complete
inhibition of the FAAH activity by an irreversible inhibitor,
which results in dramatic elevations of AEA, effects on the
HPA responses to stress are subtle at best and inconsistent.
Given that the FAAH 385A homozygotes show only a
partial loss-of-function for enzyme activity and modestly
elevated AEA levels compared with what can be achieved
by pharmacological inhibition of FAAH, it is not surprising
that this was not sufficient to modify the HPA responses to
stress in either the human or mouse AA homozygotes.
Importantly, these data support the hypothesis that the
impact of AEA signaling on stress, anxiety, and fear are
likely due to direct modulation of neuronal excitability
within cortico-limbic circuits and is not an indirect bypro-
duct of alterations in hormonal reactivity to stress or aver-
sive challenges itself. Future work using pharmacological
tools will be required to elucidate if FAAH inhibition can
dampen the stress-induced neuroendocrine changes in
humans.

In summary, we present translational evidence that
reduced FAAH activity results in elevated basal AEA and
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protects against stress-induced decreases in AEA in the
periphery and brain areas that process fear learning, anxiety,
and behavioral stress responses. In humans, AA homo-
zygotes show facilitated fear extinction and are protected
against stress-induced increases in negative affect. Thus,
even partial reduction of FAAH activity protects against
negative biochemical and behavioral consequences of
stress. Together, these observations provide a compelling
rationale for evaluating FAAH inhibitors as an adjunctive
pharmacotherapy for PTSD.
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